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Symmetric and Nonsymmetric Buckling of Finitely Deformed
| Eccentrically Stiffened Shells of Revolution*
by :
- David Bushnell**
Lockheed Missiles and Space Company, Palo Alto, California
ABSTRACT

The symmetric and nonsymmetric buckling of axisymmetrically loaded shells
of revolution is étudied. The analysis i1s valid for monocoque and eccentrically
stiffened shells. Finite prebuckling rqtations and other nonlinear prebuckling
effects are accounted for in the stability analysis, which is formulated as a
finear eigenvalue problem and treated by the method of finite difrerences.
bonnell-type equations are used in the study of nonsymmetric bifurcation buckling
and appropriatelyulinearized Reissner equations are used in the study of symmetric
bifurcation buckling. Nonlinear Reissner equations are used to obtain the pre-
buckled state of the shell and to covef the case of large deflection axisymmetric
collapse. The boundary conditions are expressed in a general form in order to
permit treatment of composite shells or ring supports whose elastic properties
are accounted for through stiffness coefficients. The analysis is programmed on
a digital computer and numerical results are presented for externally pressgrized
monocoque torus shells, eccentrically stiffened shallow spherical caps, and mono-
coque complete spherical shells‘witﬁ local imperfections in the form of flat
spots. Good'agreement is found with previous independent investigations of the
torus and with experimental results on internally stiffened.spherical caps.
Some significant new conclusions reached are: 1) Finite preﬁuckling rotations

and other nonlinear prebuckling effTects do not affect the theoretical buckling

loads of torus shells; 2) the eccentricity effect must be included in order to




predict accurately the buckling load of meridionally stiffened spherical

caps; and 3) externally preséurized, imperfectly manufactured spherical

shells will fail through large-deflection axisymmetric collapse rather than
through bifurcation buckling.

The computer time associated with this research wag sponisored in part by

the IMSC Independent Development Program and in part by the NASA under
contract NAS 1-6073. '

*% Research Specialist, ATAA Member.




Nomenclature

a meridional radius of curvature of torus, sphere

Aij coefficients of constitutive equatlons, see Ref. 1
b ‘ - distance from axis of %ymmetry to meridional center of

curvature of torus

bg arc length between circumferential ribs
B33. Bgg see equatiéns (5a) |
BAll, etc. boundary condition coefficients at A, see eq. 9
BBll, etc. boundary conditién coefficients at B, see eq. 9

. 033 shear modulus of shell wall C33 =g/[2(1 + v)]
E qung's modulus
G shear modulus of ribs

»H horizontai force/length
J torsional stiffness constant for ribs
k¥ curvature of deformed shell
X Gaussian curvature
M moment resultant
My (Myp + My )/2
m number of meridional stiffeners
N stress resultant
n , number of circumferential waves in buckling pattern
P pormal pressure
pcr buckling pressure for complete sphere of thickness t or ts
R fadius of curvature | |
Rimp radius of curvature of imperfection in spherical shell
r horizontal radius from axls of symmetry to'middie surface
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8 arc length

t shell wall thickness

u M displacement tangential to undeformed meridian
uy " horizontal displacement
u, vertical displacement
v " circumferential displacement
v - vertical force/length
W normal displacement

o angle from centerline to edge of spherical dome; also

edge angle of imperfection

B ' meridional rotation
non L2 - v?) 1 e/ 2
A lnom(R/Rimp)l/g J
€ middle surface strain
H change in radius of curvature
v Poisson's ratio
] _ stress function for n = 0 case. ¢ = rH
) | Alry-type stress function
p loading parameter, e.g; ﬁypcr
Per critical loading parameter
6 : circumferential coordinate

Subscripts and superscripts

() differentiation with respect to arc length's

¢ ) differentiation with respect to circumferential coordinate, ©




(),
)
(),

( )ip

()

ghell wall, not including stiffeners

pertains to meridional direction

pertains to circumferential direction

ghear resultant, twisting moment, twisting change in
curvature |

prebuckling quantlity




Introduction

While much anslytical and experimental work has been done on the stability
of monocogue cylindrical and spherical shells and on eccentfically stiffened
cylindrical shells, there exist fewer analytical or experimental studies of
more general shells of revolution with more general ﬁall construction. In
addition practically all of the work done on shell stability presupposes a
prebuckled state of thé shell based on linear theory.

The stability problem as formulated here has two parts. In the first
part the two equations governing the prebuckled state of an arbitrary, axi—.
symmetrically loaded shell of revolution are solved. These are nonlinear,
‘nonhomogeneous, second-order, ordinary differential equations. Their solution

wand numerical examples are presented in Ref. 1. The second part involves the
solution of a linear eigenvalue problem. Displacements and stresses calculated
in the first part appear as known variable coefficients in the two homogeneous,
" linear, partial differential equations governing stability. The lowest eigen-

value of these equations is the buckling load.

Stability Equations: n‘# 0

The general equations governing the stability of shells of revolution
when n # O can be simplified by making the so-called "shallow" shell assumptions
These assumptions are discussed in Ref. 2. They are:

1. +the usual assumptions of Love's first approximation,

2. the assumption that the flexural and extensiénal strains are of

comparable magnitude, or
L t/R < < tu/¢ << Min.(R/t, 1/txn)
where w 1s the maximum absolute change of curvature and ¢ 1is the

meximum sbsolute middle surface strain.



3. the assumption that

KL® << 1

where X 1is the Gaussian curvature and I 1is the wavelength of
deformation.
The first assumption is baslc to almost every engineéring shell analysis.
The second assumption has two important consequences: (L) Two of the three
compatiblility equationé for the deformed.middle surfaééhhay be approximated
2 by the similar equations for en jnextensional deformation of the middle
é surface, and (2) a moment resultant divided by a radius of curvature of the
middle surface, or multiplied by a change in curvature can be neglected

compared to the stress resultants. The third assumption permits the

approximate solution of the in-plane equilibrium equations by an Airy—type

| stress function.
!
The governing equilibrium equations are:

' [, | . =
(er) r'N, + N, 0

. [ 1 =
N, + (erz) + 1'Ny, 0 (1)
- "o . 1 f 1° .
(er) M2/r + (r M2) + My o+ rMT/r
= r(N Y+ ks = NygHy - Nooro)
and the compatibility equations are
v ' . =
(zuy)' - xiny + M 0
H.+(rﬁzy +r'n, = 0 )
‘ (2)
- (re2)" - G:I/r + (r'el)' + eié + r! eie/r
= -r(uzk{ + w K+ BOKy )
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Equations (1) and (2) are almost analogous, with

e _Nl . n== N, na> Ny
o ' , N (3)
ext My =3~ M, €y 57 My

Equations (la) and(lb) and equations (2a) and (2b) ere satisfied approximately

by Airy-type stress and curvature functions:

N, = &/ra + @'r'/r
N2 = (p"
Np = - (¢'/x)
L (&)
’(—-L = w"
Hy = o

mp = - (W/r)

According to Koiter (Ref. 2) w can be considered a "curvature function',
analogous to a stress function. There is no need to define it as the.normal
displacement. However, in the present investigation, where the displacements
from the prebuckled equilibrium state are considered to be infinitesimal, w
does represent the actual normal displacement within the accuracy of the
"shallow" shell equations.

The final governing equations are written in te;ms of ¢ and w Dby

inserting equations (4) into (lc) and (2c), with the constitutive equations:



& ] jAll Ao ° A13 | A 0 ] Ny | E
&> Ay Ay 0 Ay Ay O o
€10 - 0 0 By O 0 0 N, (5

) M Ay Ay 0 Ay Ay, 0 1 |
M, Mg Mg O By Ay O "y

M o 0 0 0 0 By | "2

where the Ai are given for eccentrically stiffened shells of revolution

J
in Ref. 1 and

. Byz = 1/(C4qt)

: (5a)
J J

C33 (t3/3 + z:Ter ém + :EC 2)
33 2733

Bgs

The Aij and Bkk are si@ilar to the constants originally determined by
Baruch (Ref. 3), who aééumed that the stiffeners are "smeared out"
{ and that they follow lines of curvature of the shell. The cross-
vsection of‘the meridional stiffeners is constant, so that their contribution
to the stiffness of a shell of revolution varies inversely as the radlus

r from the axis of revolution. The eccentricity effect is retained by
assuming that the strain varies linearly through the actual thickness of

the stiffeners and not through a smeared out or "effective" thickness.

The sign convention is shown in Fig. 1. A positive chénge in curvature

is such as to reduce the initial curvature. This same convention was used

in Ref. 1.




E%j Two ordinary differential equations of fourth order result when

o = qh(s) sin n@
(6)
W= wn(s) sin no
are inserted into the partlial differential equations of compaﬁibility and
equilibrium. The final equations have the form:
CB(M.l)cpiv + CB(M,2)¢" + CB(M,3)q" + CB(M,4)q' + CB(M,5)q -
7
+ CB(M,6)wiv + CB(M, 7T)w"™" + CB(M,8)w" + CB(M,9)w* + CB(M,10)w = O
where
CB(M,1) = - r A,
= ! - - - '
1 cB(M,2) r (A12 Ay 2A22) 2rAl,
2 o (8)
cB(M,3) = r All/r +n (A12 + Ay 4 B33)/r + rK(A,, = Ay + 2A21)
- At - "o TAl FAT F
2r A21 rA22 2r A22 + r A12 + fl
— 3,.2 2 2
CB(M,4) = - All(r' /x4 2r'K) + Azl(r'K - 2nr'/r)
- 2,2 1 2 - ' 2 AN
B33n r'/rc + A21(2rK +10%/r - r /r) - A21
2
1 H 1
+ Allr /r + n2B33/r + f2
CB(M,5) = n2{§11(2r'?/r2 + K - ng/r2) + AEl(K + 2r'2/r2)

2

+ B33(K + r’a/rg)}/r +n Agl/? - r'Ailn2/r2

rot1 272
-r B33 n /r° + f3

10



The coefficients written as equations (8) are the coefficients of the ¢-terms
of the compatibility equation. The coefficients of the w-ﬁermsband of the
equilibrium equation can pe obtainediby analogy. Table 1 gives the changes
which must be made in the Aij and definitions of fl , f2 s and f3'. In
the derivation by analogy of the remaining undefined coefficients, the values
given in the first column of Table 1 are replaced by the cbrresponding vaiues
of the other three columms.

The desigpation CB(M,N) for the numerical coefficients"is used in the
.computer program to be explained below. The row pumber M denotes the mth
.equation in the set of 2K + 10 finite-diffgrence equations generated by dividing

the meridian inté K intervals, satisfying compatibility and equilibrium at
the X + 1 points in the domain and satisfying 4 boundary or symmetry conditions

at each end of the meridian. In the computer program odd equations are

compatibility equations and even eguations are equilibrium equations.

11



Boundary Conditions

The boundary conditions for the stability problem are treated in a
manner snalogous to that explained in Ref. 1. General boundary conditions

cen be written in the form:

A1l BAl2  BAL3  BALL  BALS  BAL6  BALT par6] x|
BA21 BA22 BA23 BA2K  BA2S BA26 BA27 BA28 My
BA31L BA32 BA33 BA3:L  BA3S BA36 BA37 BA3S uy
BAL  BAh2  BAM3  BAlL  BALS BALG  BAL7  BA4S 8 $
BE11 BB12 BB13 BBk  BBLS BB16 BB17 BB18 Vv
BB21 BB22 BB23 BB2F  BB2S BB26 BB27 BB28 rN
BB31 BB32 BB33 BB 34  BB35 BB36  BB3T BB38 u,
LBBM plk2  BB43  BBUL  BBUS  BBLG P47  BBLE] LrV

The first 4 of eguations (9) are the boundary conditions at A (See Fig. ).
The last 4 are the boundary conditions at B . The boundary conditions are
given in this general form in order to permit treatment of composite shells
in which the elastic properties of adjacent structures are accounted for
through their stiffness coefficients. In addition the formulation of the
stability problem must be compatible with the formulation of the prebuckling
ponlinear analysis. Hence the first four guantitles in the column vector of
equations (9) are the same as those appearing in equations (14) of Ref. 1.

The boundary condition equations have the form shown in eyuation (17)-
Tables 2 and 3 give the coefficients B(I,J) for the forceérénd displacements
pormal and tangential to the prebuckled middle surface. These must be
resolved in the horizontal and verticai directions for use»as‘shown in
equations (9). With regard to the Aij end By > the changes shown in
Teble 1 must be made in order to derive by analogy the coefficients of the
w-terms (B(I,d),» J =7 fchrough 10). The functions £ through f,, are
tabulated in Table 3. |

12




The expressions for u end v 1in terms of the stress tunction ¢ and

the normel displacement w are obtalned by first elimipnating v and the - -

g-derivatives of u from the strain-displacement relations:

eg = u' 4 W/R) + B’
& = ur'/r + v'/r + w/R, (10)
6o = u'/r + r(v/r)' + aow'/r

The following equation is found:

uw/r + u(rK + rt? r) = re! 4+ r'e, + xvW'kt - r'w/R, - B W/T (11)
2 1 2~ B

€2~ 2
*The circumferential displacement v can be found from equation (10b) and

equation (11).

Solution of the Equations

The method of finite differences is used to solve the linear differential
equations of the form (7). The set of finite difference equations is arranged
as described in Ref. 1 (See Fig. 2 of that reference). Hence the matrix of
coefficients is strongly banded about £he main disgonal. Efficient machine
language subroutines have been written st the Lockheed Missiles and Space
Company (Ref. ) to solve large equation systems whose coefficient matrices
are banded.

The derivatives of - ¢ and w are simulated by 5-point central difference
formulas and the coefficients of 2M + 8 algebraic eqﬁati&ﬁs are stored in a
condensed matrix A . The 2M + 8 equations correspond to the compatibility
equation and the equilibrium equation .at M points on the meridian, and 8

boundary conditions, four at each end of the shell.
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Stability Equations for n = O

The stability equations for n = O can be derived by carefully speclalizing
the equations valid for n # 0, or by appropriately modifying the nonlinear
prebuckling equations of Ref. 1. When one attempts to solve equations of the
form (7) by the finite difference method, the case n = 0 gives rise to numerical
difficulties associated with ill-conditioned coefficient metrices. Hence, the
n = O case is approached by modifying the Reissner-type equations (9), (11),
and (15) of Ref. 1. The quantities y , B , and Dy are each split into two

.

parts:
LA N ] B=8B,+ B Dy = Dy + Dy, (12)

" The prebuckling parts #o ’ ﬁo » and Dﬁo are finite; the increments Wi ’

Bi s and Dﬁyi are infinitesimal. Since
Dy = § - rV(r'Rz/r) (13)

and rV , being statically determinate, does not change during buckling, it
is clear that D¢i = ?1 . The following stability equations result when the
right-hand sides of eguations (12) are inserted into equations (9), (11), and

(15) of Ref. 1, and only linear terms in the increments ¢i and Bi are retained:

4

Compatibility: M =2I + 1

C(M L))"+ C(M2)y) + [c(M,3) + CNONL(M,3)8] + CNONL(M,T)g 1 ¥;
+ C(mh4)B] + [CNONL(M, 1) + CNONL(M,2)B_ + CNONL(M;3)D¢O + CNONL(M,4)p] 8]
+ [CNONL(M,Q)Bé + CNONL(M,5) + 2CN0NL(M,6)5o + CNONL(M,7)D¢O + CNONL(M,8) rV

+ CNONL(M,9)p] By = © (14)
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Eguilibrium: M=2L + 2

C(M.i)ﬂ + [CﬁONL(M,l) + CNONL(M,Q)ao]\yi + [c(M3) + CNONL(M,h)ﬁé
+ CNONL(M,8) B, 1¥; + c(m, 1)) + [CNONL(M, 3) + CNONL(¥, 4)D,
+ CNONL(M, 5)p I8 + [CNONL(M, 6) + 2CNONL(M)T)B, + CNONL(M, 8)Dy
4+ CNONL(M,9) V + CNONL(M,20)p] By = 0 (15)

The boundary condition equations., of which there are two for each endpoint

of the meridian, have the form:

: c@n2)y) + [c0n3) + cNONL(M, 3)B, Ty + C(M:5)B{ e

"+ [cnoNL(M,1) + PCNONL(M, 2)B + CNONL(M, 3)Dy + CNONL(M,1)p1 By = O

Formulas for C(M,N) and CNONL(M,N) are given as equations (10)s (12), and (16)
jn Ref, 1. As in Ref. 1, the stability equations for n = 0 are solved by
simulating the derivatives by 3-point finite-difference formulas at each of
the M stations on the meridian. The arrengement of these equations in a -

condensed matrix is as described in Ref. 1 and above.

Finding the Towest Eigenvalue

The stability equations in finite difference form are a set of linear,

homogeneous, algebraic equations. There exist nontrivial solutions of this

set for discrete values of a parameter, in this case’a load or pressure parameter.

The lowest eigenvalue'is +the buckling load or pressure. Tts value can be
obtained by various methods. The deperminant of the coefficient matrix can
be plotted versus the load in order to find the ﬁoint where its sign first

changes. When the eigenvalue problem has the form

15
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(A +‘ AB)x = O | , , (17)

an iteration schemé (Ref. 5) can be employed to calculate both the lowest
eigenvalue and eigenvector.

In this general sanalysis in which nonlinear prebuckling effects are
included, the eigenvaelue problem does not have the simple form (17). The
eigenvalue parameter A (load or presspre) does not sppear linearly, but
manifests itself through the prebuckling.meridional rotation 50 » stress

resultants NlO and NEO ,» and changes in curvature CURV1 and CURVZ, which
,appear in the coefficients of the stabllity equations. These quantities are
| related ¥n a nonlinear way to the loading. However, there are many practical
shellrstructuréé which buckle when Bo is so small that linear theory is
still accurate. In such cases the stability equations can be approximated
by equations of the form (17) and the power method (Ref. 5) can be ﬁsed to
f£ind the lowest eigenvalue and corresponding eigenvector with a fair degree
of accuracy.
Wheﬁ the noﬁlinear terms are important, such as in the case of bifurcation
buckling of externally pressurized shallow spherical caps, the pover method
can be used»to advantage in the following way: The determinant D of
coefficients of the stability eguations 1is evaluated for incréasing values
of the loading parameter p , where rather large step sizes in p are taken.
Figure 2 shovws a plﬁt'of D versus p . There is a‘p—interval, p, to oy
in which D first changes sign. The load for which D = 0 is approximated
bby linear interpolation from the endpoints Pl and 'bg of the interval.
The etror in the buckling load is mow Dp = p3 = p,. - If Dp/ Py << 1

BO ’ NlO and N20 can be expanded in Taylor series about p3:

16
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(B,)5 + z(ag /ap)y Mo = (No)y + 2(an /ap),

(18)
Noo = (N20)3+ z(szO/dp)3

where z = p - p3 « Similar expansions can be made for the prebuckling
changes in curvature CURVL and CURV2 . The derivatives dso/dp ,delO/dp )

etc. are celculasted from interpolation formulas such as

o\ LMol | <_1___ X _1__\ ). - LMoy (19)
. * .
dp 3 LQ*STEP Ll L2 1073 Ll STEP

fSubscripts 1, 2, and 3 refer to values corresponding to P’ p2 » and p3 .
The quentities ‘Ll ’ L2 , end STEP are shown in Fig. . A value for z 1is

calculated from the linear system

(A+2B)x = O - (20)

through use of the power methéd. Sincé Dp/pcr << 1 , convergence 1s indeed
rapid. The pew value of p 1is p = P3 +z . If lZ/P3‘ is less than some
preassigned number ERR , caleulations for the eigenvalue terminate. If not,
new derivatives (dBo/dp)h , etc. are calculated, and a new correction factor is

calculated from equation (20} Iterations proceed until iz/p‘ < ERR .

The Computer Program

Figure 3 is a flow chart of the computer program used for finding the
lowest eigenvalue (buckling load). The boundary condition coefficients
(eq. 9), indices for shell geometry and type of loading, and the wave number

n are read in from data cards. The buckling load p 1is first found as a

17



" function of the wave number n éssuming no prebuckling rotations. Pre-

buckling membrane stresses are calculated from membrane theory and the power
' mefhod is used to find the lowest eigenvalue. The wave number n 1s varied
until & minimum p(n) is found.

A more accurate value of p is then calculated.for the critical wave
number by‘includingvnonlineér prebuckliﬁg effects and plotting the stability
determinant as described in the text associated with equations (18)-(20).

There are cases in which the wave number corresponding to a minimum
value of Por .calculated from linear theory is not the same as that for
e minimum value of Por calculated from.nonlinear theory. For these cases
an option is provided in the program through which one éan bypass the linear
branch and caleulate pcr(n) from the nonlinear theory only.

The linear branch is provided to save computer time. For a great many
shell geometries, use of the membrane prebuckling analysis yields good
approximations to Por and the corresponding wave number n . Less trial
and error is then needed in the more time-consuming nonlinear prebuckling

analysis.

Numerical Results

The compubter program based on the étability theory described above has
been used fo calculate prebuckling deformations and buckling loads and modes
for seyeral types of shells. The program was checked by performing calcula-
tionsb§5r externally pressurized shallow monocoque spherical caps. The
results aéfeed with the findings of Huang (Ref. 6). The proéréi was further

evaluated by calculating buckling loads for monocoque cylinders and conical

frustums under hydrostatic compression. R Results agreed with the loads

- calculated in Ref. 7 and Ref. 8, respectively. <Calculations were also made

18



for an axlally compressed cylindrical shell reinforced by external siringers
of rectangular cross-section. The buckling load agreed with that found in

Ref. 9.

Buckling of a Torus under Hydrostatic Compression

In all of the numerical examples listed above, the "shallow" shell
theory is clearly acéuraﬁe, since the sheil is either géometrically shallow,
or it buckles into a fairly large number of waves. In order to further
evaluate the accuracy of the theory, the more nmarginal case of the monocoque
torus was studied. Sobel (Ref. 10) has recently obtained buckling loads for

. § wide range of torus geometries. His calcuiations for n % 0 are based on
more accurate shell stability equations, wherein the second and third assump-
tions‘(see page i) of this analysis are not made. However, Sobel does not
include prebuckling rotations and nonlinear prebuckling effects in his work.

Numerical results from the asymptotic analysis of Jordan (Ref. 11) for
n = 0 as well as Sobel's results for n = O are directly comparable to the
results of this analysis, since the shallow>shell assumptions are not made
in this case. Both Jordan's analysis and the analysis of this paper when
n = 0 are based on Reissner's equations (Ref. 12).

Table 4 lists the buckling loads £rom the three independent investiga-
tions for a/t = 100 &nd various values of b/; énd n . The loads in the
column labeled "this analysis" were calculated both from the linear theory
and from the more exact theory in which prebuckling r;tations and nonlinear
prebuckling effects are included in the stability equations; Both theories
yielded the same buckling loads for all values of b/a and n .

When.b/a < T7-and n f 1 the three analyses agree. The large discrepancy

in the buékling loads for n = 1 could be due to the shallow shell approxima-
tion, although this is not certain. The agreement deteriorates for increasing'

19



b/a. When b/a is large the major terms in the governing equations tend to
cancel, leaving small terms to determine the behavior of the torus} These
small terms differ in the shallow shell and non-shallow shell ‘analyses.

When n = O and b/a ig large, the lack of agreement between the present
results and Sobel's results is probably due to the assumption in this paper
that the vertical force/length V is statically determinate and hence does
not change during buckling. However, V 1is not statically determinate fof
the torus, sincette meridian is doubly-connected. When b/a is small the
deformations are concentrated near the crown, snd V at the equator can
‘be very accurately calculated from membrane theory. For large b/a this

is no longer true, since the buckling deformations are almost inextensional.

Eccentrically Stiffened Shallow Sphericeal Dome

It is possible with the theory described above to calculate buckling
"loads for eccentrically stiffened shallow spherical domes of the same
geometry as some of those tested by Meyer and Bellifante (Ref.-13). It
should be emphasized that this analysis applies only to the general instability
mode of failure. In Ref. 13 the domes are referred to as M-2, M-3, and M-k
They are stifrened meridionally by intermal ribs of rectangular cross-section.
The material of the test domes was Bakelite with a modulus E = 465,000 psi
and s Poisson's ratio v =0.37. The geometry of the domes is given in Table 5,
and the buckling loads in Table 6. All of the shells weré clamped at the
edge. . |

Photographs in Ref. 13 of buckled shell models M;é, M-3, and M-4 indicate
that the mode of failure was general instabllity. Buckling patterns with 8

circunferential waves formed in all three cases.

20



The results summarized in Table 6 (pi) indicate that theoretically model
M-2 should vuckle into 9 waves, M-3 into 8 waves, and M-4 into 11 waves.v
However, the buckling load P is not strongly dependentAon the wave
number, and it is likely that during the large postbuckling displacements
the wave pumber changes in ordef to maintain some kind of "least energy"
symmetry with respect to tﬁe stringers. No such preferred circumferential
orientation is possible in this theory, since the stiffeners are "smeared
out."

Two interesting phenomena are evident from Tablg 6. Of great importance
to the designer is the fact that external stiffening ralses the buckling
lcad (pg) fbr the same structural weight. A similar phenomenon has been
noted by several investigators in the theory of axialiy compressed, eccen-
trically stiffened cylindrical shells.

‘ Another interesting point is that the theor& based on the membrane pre-

buckling analysis with Bo = 0 yields lower buckling loads‘(pB) for M-3 and M-k

than does the more exact analysis including prebuckling meridional rotations and

nonlinear prebuckling effects. This behavior is the reverse of that for

shallow monocoque domes. In Ref. 6 Huang shows that the buckling load of &

‘shallow clamped cap, calculated by assuming uniform prebuckling displacement

andwstress; is always greater %han thé buckling load of a complete sphere

(see Fig. 6, Ref. 6). The load calculated from the "exact" analysis is

alvays less than the buckling load of a complete sphere (see Fig. T» Ref. 6).
Figure 4 shows the prebuckling deflection at Por and the buckling

mode shape for n = 11, model M-4. The shapes are similar to those for an

externally pressurized monocogque spherical cap, clamped at the edge.
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Imperfect Spherical Shells

In Ref. 1 the external pressures at whicﬁ {mperfect spherical shells
collapse axisymmetrically are calculated. The local geometry of the shells
is as ghown in Fig. 5. Nd attempt is made in Ref. 1 to calculate the
loaeds, if such exist, at whiéh the deformed symmetrié prebuckled equilibrium
state becomes unstaeble and bifurcation to a nonsymmetric equilibrium state
occurs.

In thebpresent analjsis, it has been found that for O < Rimp/R < 1.k,
axisymmetric collapse occurs before bifurcation buckling when A is less
than about 5.7, and bifurcation buckling occurs first when A 1s greater
. ,
than about 5.7. The same rule of thumb applies to shallow spherical caps
clamped at their edges.

Figure 5 shows the prebucklingideflection and buckling mode shape for

25T Rimp/R = 1.4 , and R/t = 100.

an imperfect spherical shell with kno

The boundary conditions for the prebuckling equations are B = M

1 = Q as

s becomes large. The boundary conditions for the stability equations are
B = Ml =v=Eu = 0 as s becomes large. These conditions are'appliea

at a distance 3.3(Rt)l/2 from the edge of the imperfection. They assure
that the uniform membrane state is approached as s beconmes large, and
heﬁce they simulate the remainder of thé spherical shell. From Fig. 5 it
is seenuthat practically all of the buckling deformation takes place in the
imperfect portion of the shell. Therefore, it 1s reaspnable to expect that
the bifurcation béhavior of an imperfect sphericalAshell will resemble that
of a spherical cap with the same geometry as the imperfectioﬁ and clamped

st o .
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Flgure 6 shows the stability curves for three imperfect spherical
ghells with Rimp/R = 1.05, 1.15, and 1.40. The dotted curve repregents
the geometric parameter A for the imperfect portion. It is seen that
indeed the imperfect pdrtion does behave almost as though it were:a cap
clamped st 1ts edge. '

Tn actusl practice, it is unlikely that imperfections with lnom > 6
will occur while a spherical shell is being menufactured or in service.
Tolerances on spherical shells are.usually expressed in terms of deviations
from sphericity. As can be seen from Fig. 12 of Ref. 1, the critical

. collapse loads for glven deviations frbm sphericity occur when knom <5

-

for any value of Rimp/R .
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Changes in Ai

J

Table 1

k

and Definitions of f, for the Coefficients

CB(M,N) ‘of the Compatibility and Equilibrium Equations

Compatibility Equilibrium
¢ terms . w-terms qrtenmsv w-ternms
CB(M,N), N =1 to 5 |CB(M,N), N = 6 to 10 cB(M,N), N =1 to 5| CB(M,N), N =6 to 10
replace A by by by
N N+5 N N+5
Ay Ay | P Ay,
As A13 Ao Ah3
Axn A, Ay Aj,
Ao o3 A3 A3z
333 0 0 Bgg
fl =0 fl = rkE fl = -rkX fl = erO
= = p! = - 7! = p!
f2 0 f2 r k{ + aorK f2 r f2 T NQO
_ .2 _ 2 _ .
£3=0 £, = -0 KY/r £y = nky/r 5 nN, o/ x

31



Table 2

Coefficlents for Tangential and Normal Forces and Displacements n fé 0

‘P“' i cPn (P'- : @
B(I,2) B(I,3) B(I, k4 B(1,5)
er r' | -n2/r
pat) -rA r'(A . - A, - A) r'2a /r = r'A! -r'ne(A +A )/:c'2
32 L2 31 32 L1 31 L1731
—rAl 2 2.,
rA32 + A3l(rK+n /r) +n A3l/r + 1
er2 ) | -n nr'/r
, - . .22
Ml A32 A3lr /r A3ln /r
: 2 2,1 [....2 :
u -TA,, -TAl, | {Allr /r + B33n /r {-r n (All+2A21+B33)/r
FACT* FACT + Ael( r2K+n2+r'2) / r, o+ nEAél/ T
- Aél + f6}/FACT + f7}/FACT
W ' . f8
1 t - ’ [ _ 1 . 1 2 -
v r'u/n (r'u rA22)/n (r'u - r A2l)/n (r'u + Am /r)/a
. .
"9
B flO

*FACT = K + r'2/r - n2/r
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Table 3

Definitions of fk for the Boundary Conditions

g-terms, B(I,J), J =2 to 5 w-terms, B(I,J), J =17 1to 10
fﬁ = BT » fy = Mo
f5 = - naao/r f'5 = - n2r'B66/r2
f6 = 0 | f6 = rkg
£, =0 f7 = - r'/R2 + nzso/r
fé = 0 ‘ | fg = 1.0
fg = 0 | f9 = r/(nRz)
fio =0 | ' fio = 1.0

33



Torus Buckling Loads for a/t = 100

Table L

b/a. n (p/E) x 106
This Analysis Sobel Jordan
1.2 o] 3.52 3.73 3.54
1 3.60
2 5.05 5.20
2.0 0 2.54 2.68 2.52
1 2.48 10.99
2 2.83 2.81
3 3.26 3.h0
2.8 0 1.99 2.15 2.01
1 1.98
2 2.22 2.21
4.0 0 1.61 1.73 1.58
1 1.56 6.83
2 1.72 1.75
3 1.87 1.92
7.0 0 1.10 1.24 1.09
1 1.07
2 1.13 1.23
30.0 0 0.hhh 0.547 0.4k
2 0.406 0.529
100.0 0 S0.172 0.387 0.185
2 0.1k9 0.370
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Table 5

Geometry for Meridionally Stiffened Domes

Shell and
Dome Designation  Number of Stiffener Geometry in

from Ref. 13 Stiffeners Inches
a t b c a o

_ ) 5
M-2 26 20 .0349 0 0191 .30 L1
M-3 26 20 .0349 .25 .0191 .30 b1
: M-k 38 20 .0272 0 .0239 .30 R
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Table 6

Buckling Loads for Meridionally Stiffened Spherical Domes

Buckling Ioads p = p/pcr*
Nonlinear Nonlinear Linear
Dome ‘Wave Experimental Theory Theory Theory
Degsignation Number n p - Internal External Internal
exp Stiffening  Stiffening Stiffening
Py Po P3
M-2 7 1.31 ' ' 1.38
8 1.19 1.26 1.46 1.31
9 1.2k 1.28
10 1.25 1.27
M-3 7 1.67
8 1.63 1.70 2.28 1.58
.9 1.68 1.54
10 1.70 ‘ 1.53
M-k 7 1.86 1.70
8 1.59 1.63: 2.21 1.57
9 1.57 1.50
10 1.54 1.45
11 1.54 1.44
12 1.56 1.4k

*

b, = 2(t /)23 - v3) 2

c
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